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Abstract. We show that PAES has a class of 264 weak keys (out of 2128)
that can be used to distinguish the ciphertext from a random in a chosen-
nonce attack framework. The distinguisher requires only one block of
ciphertext (the very first one), and has a negligible time complexity. In
a nutshell, it exploits the lack of constants in PAES and the symmetric
properties of the keyless AES round function.
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1 Introduction

PAES [3] is an authenticated encryption scheme proposed for the CAESAR

competition [1]. In this note we show that not all 2128 key of PAES are
secure for use – rather there is a class of 264 weak keys. If PAES is in-
stantiated with such key, and the adversary can choose the nonce, then
the cipertext stream can be distinguished from a random one with only
a single query to the encryption oracle and negligible complexity. This
attack framework is specified in the submission document (see Attacking
goals, point 3, on page 8 of [3]).

The security goals of the CAESAR competition are not clear against
attacks that use weak keys. We consider that these goals should meet
the similar security levels as in the case of more traditional block/stream
ciphers – there, a weak key attack that uses one plaintext (and a few
operations) to distinguish the ciphertext from random, is considered a
valid attack.

In the distinguisher presented further, we exploit the following two
facts:

– The initialization of PAES and all the calls to AES rounds do not use
any constants

– The AES round function perserves certain symmetries if composed of
only SubBytes, ShiftRows, MixColumns (i.e., no AddRoundKeys, or with
an all-zero subkey)

We describe further the distinguisher for PAES-4, and we note that it
can be applied to PAES-8 with minor modifications.



Fig. 1. The round function StateUpdate(S,M). During the processing of the plaintext,
the xor from S3 to S4 is absent. The image is taken from [3].

2 Specifications

We give minimal description of PAES-4 which should be sufficient to un-
derstand the attack. The design resembles a stream cipher: it has an
initialization (where the key and the nonce are loaded into the state),
then it process the input message and produces ciphertexts, and finally
in the finalization it produces the tag. The internal state S has 4 words
S1, S2, S3, S4, each of 128 bits, i.e. |Si| = 128, i = 1, 2, 3, 4. The state up-
date function StateUpdate(S,M) is the round transformation and uses 4
AES-round calls to update the state (see Figure 1).

We emphasize that all the AES calls are keyless, that is, composed of
SubBytes, ShiftRows and MixColumns (but no AddRoundKey).

Initialization. The 128-bit master key K and the nonce N are loaded into
the four words of the state, the state goes through 5 rounds and at the
end the key is xored to all four words of the state:

S1 = K ⊕N

S2 = L(K)⊕ L3(N)

S3 = L2(K)⊕ L(N)

S4 = L3(K)⊕ L2(N)

for i = 1 to 5

S = StateUpdate(State, 0)

for i = 1 to 4

Si = Si ⊕K



Fig. 2. One round of encryption. The image is taken from [3].

where L is the linear transformation that operates on the four 32-bit
columns a, b, c, d of a 128-bit word a||b||c||d, and is defined as L(a, b, c, d) =
(b, c, d⊕ a, a).

Processing the plaintext. In one round, from 16-byte plaintext Pi, 16-byte
ciphertext Ci is obtained with one call to the StateUpdate (see Fig 2):

tmp = S3

StateUpdate(S, Pi)

Ri = tmp⊕ S3

Ci = Pi ⊕Ri

3 Symmetric Properties of the AES

We specify here how the known symmetric property [2] of the AES ap-
plies in the case of PAES. Namely, if an state is symmetric in the sense
that its two halves are equal, then the keyless round function of the AES

maintains this property. In the sequel, we denote AES0 the keyless AES

round function. We recall the property of [2] using block matrices, and
we introduce the more general following notations:

U(A,B) =

(
A A

B B

)
, V (A,B) =

(
A B

B A

)
, W (A,B) =

(
A B

A B

)
.

Additionally, we denote U , V and W the associated sets respectively for
all possible values of the 2×2 block matrices A and B. Finally, we denote
M the constant MDS matrix used in the AES round function, and observe



that:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 =

(
M1 M2

M2 M1

)
= V (M1,M2) ∈ V.

Property 1. Let S ∈ U . Then, AES0(S) ∈ U .

Proof. Let S = U(A,B) ∈ U , and write the bytes in S as:

(
A A

B B

)
=


x0 x4 x0 x4
x1 x5 x1 x5
x2 x6 x2 x6
x3 x7 x3 x7

 .

As the SubBytes operation applies the same bijection to all the bytes
in the state, we ignore it here as it obviously preserves the structure.
However, after the ShiftRows operation, the state becomes

x0 x4 x0 x4
x5 x1 x5 x1
x2 x6 x2 x6
x7 x3 x7 x3

 def
=

(
A′ A′

B′ B′

)

which still belongs to U . Then, the MixColumns operation gives:
2 3 1 3
1 2 3 1
1 1 2 3
3 1 1 2

×


x0 x4 x0 x4
x5 x1 x5 x0
x2 x6 x2 x6
x7 x3 x7 x3

 =

(
M1 M2

M2 M1

)
×
(
A′ A′

B′ B′

)

=

(
M1A

′ ⊕M2B
′ M1A

′ ⊕M2B
′

M2A
′ ⊕M1B

′ M2A
′ ⊕M1B

′

)
def
=

(
A′′ A′′

B′′ B′′

)
∈ U .

ut

Property 2. Let S ∈ W. Then, AES0(S) ∈ V, and AES0(AES0(S)) ∈ W.



Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

(
A B

A B

)
=


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 .

Again, we ignore the SubBytes operation as the bijection applied pre-
serves the structure of the internal states. However, after the ShiftRows
operation, the state becomes:

x0 x2 x4 x6
x3 x5 x7 x1
x4 x6 x0 x2
x7 x1 x3 x5

 def
=

(
A′ B′

B′ A′

)
∈ V,

which is tranformed by the subsequent MixColumns tranformation into
the state:(

M1 M2

M2 M1

)
×
(
A′ B′

B′ A′

)
=

(
M1A

′ ⊕M2B
′ M1B

′ ⊕M2A
′

M2A
′ ⊕M1B

′ M2B
′ ⊕M1A

′

)
def
=

(
A′′ B′′

B′′ A′′

)
∈ V.

After applying a second keyless AES round, we get:

(
A′′ B′′

B′′ A′′

)
=


y0 y2 y4 y6
y1 y3 y5 y7
y4 y6 y0 y2
y5 y7 y1 y3

 SR−→


y0 y2 y4 y6
y3 y5 y7 y1
y0 y2 y4 y6
y3 y5 y7 y1

 def
=

(
A′′′ B′′′

A′′′ B′′′

)
∈ W,

and by the MixColumns:(
M1 M2

M2 M1

)
×
(
A′′′ B′′′

A′′′ B′′′

)
=

(
M1A

′′′ ⊕M2A
′′′ M1B

′′′ ⊕M2B
′′′

M2A
′′′ ⊕M1A

′′′ M2B
′′′ ⊕M1B

′′′

)
def
=

(
A′′′′ B′′′′

A′′′′ B′′′′

)
∈ W,

which concludes the proof. ut

Finally, we can represent the action of the keyless AES round function
AES0 of the three sets U , V and W as follows on Figure 3.



U V W

AES0

AES0

AES0

Fig. 3. Action of AES0 of the symmetrical states from U , V and W.

4 The Distinguisher

To distinguish PAES, we use the first ciphertext C1 produced during the
encryption of the plaintext P1 = 0128 with a secret key K ∈ W and nonce
N ∈ W. The key K can be any of such 264 keys (the first two rows equal
to the second two rows), and a similar holds for the nonce N .

Let us inspect first how the state words S1, S2, S3, S4 change the class
belongings (either W or V ) from the very first to the last steps of the
Initialization:

– K,N ∈ W. For any input X ∈ W, the output of the linear function
L(X) ∈ W, that is, if the input is in W, then L does not change the
class. Therefore, S1, S2, S3, S4 ∈ W after the initial assignments in the
initalization.

– After the first update. The xors do not change the class belongings,
thus each Si stays in W after the xors at the top of the StateUpdate.
Further, according to the properties presented in the previous section,
the AES rounds change the class from W to V, thus at the end of the
first update, Si ∈ V.

– After the second update. Similarly as for the previous, but this time
the class of Si changes to W.

– After the third update. The class of Si are all V.
– After the fourth update. The class of Si are all W.
– After the fifth update. The class of Si are all V.
– After the xors of the key. Each Si has the form Xi⊕K, where Xi ∈ V,

and K ∈ W.

Now lets focus on the production of the ciphertext C1. We can see
that at the top of the StateUpdate, first S2 is xored to S3. The resulting
word Y3 it must belongs then to V since X2⊕K⊕X3⊕K = X2⊕X3 ∈ V.
The appliction of the AES round to Y3 results in a word Z3 from the class
W.

The ciphertext C1 is defined as

C1 = (X3 ⊕K)⊕ Z3 ⊕M1 = X3 ⊕K ⊕ Z3,



where X3 ∈ V,K ∈ W, Z3 ∈ W. Let,

X3 =

(
XA XB

XB XA

)
,K =

(
KA KB

KA KB

)
, Z3 =

(
ZA ZB

ZA ZB

)
,

then

C1 =

(
CA CB

CC CD

)
=

(
XA ⊕KA ⊕ ZA XB ⊕KB ⊕ ZB

XB ⊕KA ⊕ ZA XA ⊕KB ⊕ ZB

)
.

Obviously CA ⊕CB ⊕CC ⊕CD = 0, hence the xor of the four 32-bit
blocks of the first ciphertext must result in a zero block.

As a result, we have a distinguisher which requires negligible complex-
ity and only one block of plaintext/ciphertexts to distinguish PAES when
instantiated with any of the 264 keys and nonces from the class W.

We note that our computer simulation confirmed the correctness of
the distinguisher.

5 Conclusion

In this paper, we have shown a distinguisher based on the AES round
symmetry used as an underlying transformation in the authenticated en-
cryption scheme PAES. The distinguisher works for a fraction of 264 out
of the total 2128 keys in the framework of chosen-nonce attacks, requires
only a single block of ciphertexts and has negligible complexity.

The distinguisher can be stopped easily with the use of keyed AES

rounds under randomly chosen constants as keys. Using such AES rounds
even only in the initialization should prevent the exploitation of the AES

round symmetry in the later rounds of the encryption. In addition, us-
ing non-zero message inputs in the initalization could result in a design
resistant against our distinguisher.

We note that PAES-8 can be attacked with the very same approach as
for PAES-4.
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